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The phenomena which occur in a fluid containedin a rotating system are strongly 
influenced by the density gradients in that fluid and by certain features of the 
geometry. In  this paper, we study several specific phenomena which involve 
stratification and/or irregular surface topography and some phenomena which 
arise because of an equatorial geometry. Although several of these studies are 
motivated by particular geophysical questions, we do not treat comprehensively 
any geophysical phenomenon. Nevertheless, the inferences we draw from these 
studies do much to clarify the roles of the mechanisms underlying various 
geophysical phenomena and these inferences should be of value when compre- 
hensive geophysical investigations are attempted. 

~~ ~ 

1. Introduction 
When density gradients are present in the fluid in a system which rotates at 

speed S2, the phenomena which occur can differ markedly from those described 
in Carrier (1965).t The analyses needed to predict such phenomena are direct 
extensions of those appropriate to the non-stratified fluid and the flows can be 
characterized with analogous simplicity. Further modifications are implied when 
the geometry is not axially symmetric and, in particular, the flow of a stratified 
fluid in a region with irregularities in bottom topography is of great interest. 

Modifications of the phenomena and of the associated analytical techniques 
also arise when thegeometry of the configuration studied is such that, somewhere 
on the boundary surface described by F ( x ,  y, z )  = 0, S2 . grad F changes con- 
tinuously from positive to negative values. We call this an equatorial geometry 
because the geophysical phenomena in the equatorial regions of our planet 
provide the strongest motivation for the study of such configurations. 

Specifically, this paper contains the following studies : 
(1) A highly simplified theory for the axially symmetric flow of a rotating 

fluid of uniform density. 
(2) A theory for axially symmetric flow in a system containing two or more 

layers of fluid, each of constant density. 
(3) A study of axially symmetric flow of a fluid of varying density which takes 

account in a crude way of any diffusive mechanisms which may be present (e.g. 
small-scale natural convection, turbulent diffusion, etc.). The principal objective 
(and result) is the identification of the parameter which determines whether the 

t Henceforth referred to, for brevity, as [l]. 
10 Fluid Mech. 23 
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fluid acts like a fluid with constant density, a multi-layered fluid, or neither of the 
foregoing. 

(4) A general theory of three-dimensional flow in a configuration whose top 
surface is perpendicular to the rotation axis and whose depth contour has slopes 
which are large compared to (v/sZL2)*.t The modification required to account for 
topography a t  the top would be extremely simple. 

(5) An examination of a particular flow configuration of the foregoing type. 
The region is an annulus whose bottom contour is shown in figure 8 and defined 
by equation (3.20). The motion is driven by moving the top surface in the circum- 
ferential &direction at a speed given by equation (3.21) and shown in figure 9. 
If the bottom were flat, the velocity in most of the fluid would be independent of 
the axial co-ordinate, i t  would have zero radial and axial components, and its 
magnitude (as a function of the radial co-ordinate 7)’ would be half that of 
figure 9. With the bottom topography of figure 8, the flow is cellular and very 
slow compared to the imposed surface velocity; the fluid over each segment of 
constant slope never leaves that region and the velocity shown in figure 11 is 
that which would prevail everywhere except near the junctions of adjacent 
segments. A plan view of the velocity field including the ‘turn around ’ regions 
near these junctions is shown in figure 10. 

(6) The flow in a second geometry. This time the bottom topography is given 
by figure 12 and the imposed top surface motion is again given by figure 9. The 
motion over ABC of figure 12 is the same as in the previous problem except for 
details near the ‘turn around’ regions. The flow in the flat region is one half that 
offigure 9 plus a uniform flow of opposite sign. That is, the flow over the flat 
b o t t w  is that of figure 14. The plan view of this velocity field is shown in figure 13. 

These flows indicate very clearly the enormous constraint implied by the 
presence of both rotation and variable depth. 

(7) The flow in a two-layer system in which the top layer is of uniform depth 
and the lower layer has bottom topography. The flow in one layer differs enor- 
mously from that in the other, and topography alone could account for the fact 
that the flows on opposite sides of the oceanic thermocline are so different. 

(8) A general formalism for the study of flows in equatorial regions and its 
application to the flow in a thin equatorial layer. The variety of flow patterns 
which emerges for a small family of geometries (layer thickness varying as a 
function of latitude) implies that the possibilities of linear models have not been 
exhausted by previous linear studies. It is the author’s opinion, based on the 
results of 0 4, that no single-layer theory will provide a satisfactory understanding 
of the Cromwell current but that an appropriate linear theory may account for 
much of the phenomenon. 

2. Stratified fluids 

figure 1 is required to move a t  the surface AB with a peripheral speed 
When a fluid of uniform density in the axially symmetric rotating system of 

v(r ,L)  = r Q f ( r )  
t u is the kinematic viscosity (molecular or eddy as appropriate), R the angular velocity 

of the system, L a characteristic length. 
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relative to the rigidly rotating reference state, the motion is characterized 
by : 

(1) Frictional boundary layers (Ekman layers) of thickness ( u / 8 ) +  along AB 
and A‘B‘. 

(2) Regions I, I1 and I11 in which the relative peripheral velocity is w(r, z )  = 0,  
v( r ,  z )  = !2rf(r) /2 ,  w(r, x )  = 0, respectively. 

z 
A B 

I 

‘ 0  A‘ B’ 

4 1  I I 

FIGURE 1. Flow configuration discussed in the introductory remarks. Clrf(r) is the 
peripheral velocity imposed at z = L. The arrows on the broken lines denote the location 
and direction of the internal currents which are present whenf(r) is positive. 

(3) Annular regions of width (v/!2)$ Lt along AA‘ and BB’ in which the diffusion 
of angular momentum and vorticity is countered by the radial convection of 
angular momentum and by axial vortex line stretching. In  particular, fluid 
emerges at B from the upper Ekman layer in the amount 

(where u is radial velocity component) and is transported along the diffusive 
layer about BB’ to the lower Ekman layer. 

The foregoing statements are accurate whenever 

u/8L2 4 1, uL2/8 < R4, I f’(r)/fmaxl 4 (u/s2)-$L-t and I f ( r ) l  4 1. 

That this kind of characterization is valid for much more complicated con- 
figurations is illustrated in [l] but, for the forthcoming material, the presentation 
gains greatly in simplicity when we confine our attention, initially, to the simple 
geometry of figure 1. 

10-2 
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Suppose now that the container is filled with two immiscible incompressible 
fluids as in figure 2 and that there is a uniform gravitational field in the negative 
z-direction. Suppose, furthermore, that the difference in density of the two fluids, 
the gravitational acceleration g, the angular speed Q, and the size of the container 
are such that, in the uniformly rotating state, the interface slope h’(r) is at  most 

T 

FIGURE 2. Ambient (rigidly rotating) configuration for stratified fluid. 

of order unity. Under these circumstances, the flow pattern induced by the 
surface motion,f(r), cannot resemble that described above for the single fluid of 
constant density. In  fact, the interface can be distorted only by an amount 
consistent with the pressure discrepancy induced by the imposed surface motion 
and, sincef(r) < 1, the change in interface-slope so implied will be small com- 
pared to the ambient interface-slope. Accordingly, we must seek a steady-flow 
pattern in which the usual frictional boundary conditions at the container surface 
are met, in which no fluid crosses the interface, and in which velocity and stress 
are continuous across the interface. 

First, however, we must develop a greatly simplified framework within which 
many configurations can be studied. 

3.1. Simpli$ed theory for  one-layer axi-symmetricJlows 
We have already seen in [ 11 that, except in narrow cylindrical layers about AA’ 
and BB‘, the flow in the configuration of figure 1 can be described byt  

4 r , x )  = V ( r )  + A(?)  exp {(i/4+ (x - 1 11 + B(r) exp {( - i/4+ (x - 1)) 

w/, 4 = W r )  +A,(?)  exp ((i/4+ (x- 1)) +BAT) exp (( - i/4*(x - 1)) 

+ C ( r )  exp { - (i /s)+x} + D(7) exp { - ( - i/e)+z}, 

+C,(r) exp { - ( i / E P X }  + Q(r) exp { - ( - i/&x}, 

and 

where 2 = z/L, 7 = r/L, B = v/2QL2, v(r, z)  = S1R[6w(q, x )  - curl 6$(7jl, x)], and 
where we have confined our investigations to those for which v and II. are small 
enough that all non-linear contributions to the momentum balance can be 
ignored. 

t Throughout this paper there is a distressing but unavoidable multiplicity of notation. 
Whenever possible, lower case letters (u, v, w, p ,  $, . . .) denote complete descriptions of 
the field variables (velocity, pressure, potential, etc.) ; capital letters ( U ,  P, . . .) denote 
field descriptions away from the boundary layers. Numerical subscripts (except zero) 
identify the region to which the variable refers but &,for example, is an interface velocity. 
Finally, V,, U,, . . . denote velocity components at  a top surface and the subscript ‘ - ’ refers 
to a bottom surface. 
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Guided by this experience, we expect the flow in the more general axially 
symmetric configuration of figure 3 to be characterized by similar boundary 
layers and we adopt the descriptions, 

V ( 7 , Z )  = V ( 7 ) + W l ,  [ X - 4 7 ) 1 / &  + a 7 9  [X-b(7)1/447 

$(Vtx) = Y('G')+G1(7, [X-d(7)I/&)+G2(7, [x-W7)I/46)7 

(2.1) 

(2.2) 

except in cylindrical layers of width AT, whose order of magnitude is not greater 
than d; these layers (in which radial diffusion will play an important role) will 

1 

I 
I ' I  

/ 
z = d(r!L) 

L z 

(4 
FIGURE 3. Configuration of 3 2.1. (a) Interface profiles. (b) Surface velocity distribution. 

be located wherever the boundary conditions imply an abrupt change in be- 
haviour. For the v(7, d(7) )  depicted in figure 3, for example, such a layer will lie 
along AA'. 

In  the absence of contributions from the (non-linear) v.gradv terms, the 
conservation of mass and momentum imply [ 13 that 

eAA$+vX = 0, (2.3) 

(2.4) 

Within the usual framework of boundary-layer theory, equations (2.3) and (2.4) 
impose no constraints on the choice of V ( 7 )  and Y(7) when equations (2.1) and 
(2.2) are substituted into them; they do require, however, that, to order &, 

eh4G1, zxxs + F!, = 0, eh2F1, x2 - GI, , = 0, 

and ec4G2,,,,,+-F12,z = 0, E ~ ~ F ~ , ~ ~ + ~ G ~ , ~  = 0, 

where h2 = 1 + [d'(7)I2, c2 = 1 + [6'(7)l2. 

EAV - $, = 0. 
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We seek a solution of these under boundary conditions which require that 

$[7)d(7)1 = $[r,b(r)l = 0, 

$Z[%dI = U+(7)9 $Z[7,bI = U-(7)? 
vE7,dI = V+(7L vE7, bl = U 7 ) .  

The solutions l$ and G, are clearly of exponential type and the application of 
the foregoing boundary conditions implies that 

V(7)  = [AW+(q) + a+V-(q) + hm+(T) + agu-(7)]/[h~ + 4, 
Y(7) = - (&)+ [V+(7) - P ( 7 )  + hU+(7) - fl~-(7)I/[A-! + 4. 

(2.5) 

(2.6) 

?J&, d )  = -Y(7)/ch2, (2.7) 

%(7, b)  = - Y(?l)/c@; (2.8) 

yZZ(7,d) = ( 2 / d 3 ) W + + ~ / d h 3 ,  (2.9) 

@z&, b )  = - ( 2 / ~ ~ 3 ) *  u- +Y/EV~.  (2.10) 

The dimensionless surface tractions are 

Thus we see that the flow has the same general character as that of figure 1 but 
that the actual recipes depend on the details of b(7) and d(7). We also note in 
passing that the diffuse cylindrical layer along AA’ of figure 3 could be calculated 
by the methods used in [l] and appended to the above description. 

For those situations in which the effective viscosity associated with the lateral 
transmission of stress is different from that for vertical stress transmission, one 
can use an appropriate value of v in appending these friction layers without 
regard to the value which was used in the Ekman layer analysis. This remark 
applies throughout the paper but no further discussion of it will appear since the 
numerical choice for Y will not affect the character of the flows we study. 

2.2. Multi-layer axially symmetric flows 
Consider now the two-layer rotating system which has the geometry of figure 2 
when in a state of rigid rotation but let the fluid a t  the top and at the bottom be 
given the relative motion 

4 7 ,  1) = V+(7)2 
u(7, 1) = v(7,O) = up/, 0) = 0. 

We describe the motion at the interface by w(7,6(7)) = V, and @Jr, b(q ) )  = U,, 
and we denote by subscripts 1 and 2 the properties of the upper and the lower 
fluids, respectively. 

Using the results of the foregoing section, we have, for the upper layer, 

K(7) = [V+(7) + FjV, + @QIl/( l+ 4, 
Yl(7) = (*El)* (v, - v, + aU,)/(1 +a+>, 

(2.11) 

(2.12) 

and, for the lower layer, 

K(7) = (d%+ aQ,)/( 1 + a+), (2.13) 

YZ(7) = -($€2)q&+auo)/(l +a+). (2.14) 
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We also require that the surface tractions pvx and ,u11.,, be continuous at 

rUlY!,/% = P2T2/% (2.15) 

x = b(7) .  Thus, according to equations (2.7) through (2.10), 

and u, = 0. (2.16) 

Equations (2.11) through (2.16) imply that, with k = (p2p2/pl ,ul )~,  

v, = V+/(l + 4 7  

v, = [(I + Ic+ a”)l(l+ (Th) (1 + k)] v,, 
v, = (T)V+/( 1 + k) (1 + (Ti), 

(2.17) 

(2.18) 

(2.19) 

Y!, = (p2/p,) Y2 = - (*€,)&kV+/( 1 + k) (1 + (T-’q. (2.20) 

We could now use the foregoing velocity distributions and the original momentum 
equations to determine the pressure distribution in each fluid. We could then find 

] A  B 

L L A  
? t 

A‘ B‘ 

(4 ( b )  
FIGURE 4. Two two-layer flow configurations. 

I 
In (a),  r; = W + ( V ) 7  K, = P + ( V ) .  

The arrows indicate the intense currents associated with the chosen V+(r). 

that surface on which the two pressures were equal and this would be the per- 
turbed position of the interface. We omit the calculation because, in any situation 
to which the linear and axially symmetric analysis is appropriate, the perturbation 
in interface position cannot affect the character of the flow nor can it even alter 
the numbers appreciably. 

Figure 4 depicts two illustrative configurations which may provide a simple 
view of the implications of the foregoing. 

Although the inclusion of details is not really justified, it  seems worth-while 
to append a characterization of the flow which occurs in the multi-layer system of 
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figure 5.  No understanding is lost and many fewer symbols are needed when we 
restrict the results to situations in which p1 N p2 2~ p3.. . , p1 E pz E pa.. . and for 
which the gravitational field is so strong that the interfaces are nearly horizontal. 
For such flows 

and the interface speeds Y, are 

K(r) = (2n- 1) V+(7)/2N (1 < n < N ) ,  

YJr)  = nV+(r)/N (O<n<N). 

(2.21) 

(2.22) 

FIGURE 5. Multi-layered flow configuration to which equations (2.21) and (2.22) apply. 

One might try to anticipate the behaviour of a fluid having a continuous 
density variation by adopting an approximation in which there are N distinct 
layers, each having constant density. When such an approximation is followed by 
a limit process in which N+co in equation(2.21), thevelocity so obtained has the 
property that v.gradp = 0. Clearly, since such a limit process ignores the 
motion in the Ekman layers, it  cannot be accepted at  face value. However, we 
shall see in the next section that such an extrapolation can be valid under rather 
special conditions. 

2.3. Flows with a continuous density gradient 

We study here the flow which ensues in the configuration of figure 1 when the 
fluid is ‘incompressible ’ but of varying density. We use quotation marks on 
‘incompressible ’ because we will take account of any transport processes which 
can modify the density of a given parcel of fluid. Such density modifications 
might be accomplished in the ocean, for example, by the diffusive-convective 
transfer of salt and heat. We model any such processes by an equivalent diffusion. 
To be precise, in fact, we write 

k A p  = v . grad p. (2.23) 
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where v is the velocity fleld (measured relative to the rotating system), p is the 
density field and k is a composite diffusion coefficient which is taken to model all 
density modifying processes whose scales are small compared to that of v. 

In  order to get explicit and simply interpreted results, we confine our attention 
to configurations for which the gravitational field is so strong that the surfaces 
of constant density (in the ambient rigidly rotating state) are almost horizontal. 
We also require that 4.  gradp,(r, z )  be well approximated by /3pa/L, where po is 
the ambient density distribution, pa is the average density, anda  a small constant. 
We prescribe as boundary conditions on p 

p( r ,L )  = P O ( T , L ) ,  p(r, -L)  = Po(r, -L).  (2 .24)  

Note that, in this section, 2 L  is the depth of the container. 

in this system are 
The linearized equations implying the conservation of mass and momentum 

divv = 0, (2.25) 

k Ap' = v . gradp, (2.26) 

and 2pa 8 x v + gradp' +p'gg - Pp'Q2r = ,LA Av, (2.27) 

where p' = p-po and p' is the pressure perturbation, p-po. In  the rigidly 
rotating state, gradpo+pog& -po Q2rP = 0, 

and the curl of (2 .28)  gives 

(2.28) 

Po,r = - Q2rPo,z/g. 

Since po,z II -/3, equation (2.26) becomes 

k AP' = Po(Q2r/g) Pu -Po PWY (2 .29)  

where u and w are the radial and axial components of V. 

We define, 

q = Rp'/Lpa, E = p /2pa  QL2 and v = RQ[bv(y, x) - curl 6$(7, x)], 

where 7 = r /L ,  x = z/L; with these definitions, the $-component of equation 
(2 .27) ,  the $-component of its curl and equation (2 .29)  become 

EAV - $z = 0, 

EAA$ + (v, - /3v) + (g/2Q2L) qT + 37qx = 0 

(k /2QL2)  Aq - iP$7 - (QzL/3/2g) 7$x = 0. 

(2 .30)  

(2.31) 

(2 .32)  

We anticipate the now familiar boundary-layer structure? and we describe 

(2 .33)  

and 

v, $9 q by 
v = V(7 ,x )+v1(7 , e -3 {x -  l})+v2(7,e-+{x+ I } ) ,  

$ = Y ( r , x )  + $.,(7, e-qx - 1)) + $2(7, E-++ I}), (2.34) 

q = Q(7, 4 + 41(7> a-+ - 1 ) )  + q2(r, 4 x  + 11,. (2 .35)  

2.1, V ,  Y, Q are functions t But we have no basis on which to anticipate that, as in 
of T only ! 
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When these descriptions are substituted into (2.30) to (2.32) and the usual 
boundary-layer arguments are invoked, we see that, for i = 1,2 ,  

(2.36) 

e ~ i ,  xxxx + vi, x + kWi, x = 0, (2.37) 

and (k/2QL2)qi,xs- ( Q 2 ~ / 2 g ) I B 7 $ i , x  = 0. (2.38) 

We also obtain Y x  = 0, (2.39) 

Ji, + (g/2Q2L) QV + +7Qx = 0, (2.40) 

and (k /2QL2)  AQ - i$Y, = 0. (2.41) 

The highly differentiated terms of equation (2.41) must be retained because, for 
many interesting values p/3 and k, it  contributes to the mass balance in an 
important way. 

evi, x x  - $i, x = 0, 

The solutions of (2.36) to (2.38) are 

v1 = A exp {a(i/s)& (x - I ) }  + B exp {u( - i/e)& (x - 111, 

q1  = (Q2L$W4P7v1, 

= a(ie)* A exp (a(i/e)* (x - 1 )} + a( - is)& Bexp {a( - i /e)& (x - 111, 

where a = (1  + v Q q 3 y 2 / k 4 g ) k  

When a - 1 -g 1,  the arithmetic is simplified considerably and, since this 
inequality is consistent with many geophysical situations and with the con- 
straints we have already imposed on po, we adopt it. Thus, replacing a by unity, 
we have 

v1 2: A exp ( ( i /e)& (x: - 1)} + B exp (( - i/e)4 (x - I)}, (2.42) 

$1 E (ie)*A exp ((i/e)* (x - I)} + ( - ie)+Bexp (( - i / e )$  (x - I)}, (2.43) 

91 2: 0, (2.44) 

w2 = c exp { - (i/e)$ (R: + 1)) + D exp { - \ - i /e)i  (x + I)}, (2.45) 

I,h2 = - (k)$ Cexp { - (i /e)a (xf l)} - ( - ie)PDexp { - ( - i/e)$(x+ 1)}, (2.46) 

q2 E 0. (2.47) 

These, together with the boundary conditions 

1)  = $(T3 - 1) = $x(Y7 1) = I,hx(rt - 1 )  = V ( 7 ,  - 1 )  = 0, (2.48) 

v(7, 1) = V+(y)7 (2.49) 

and equations (2.33) to (2.35), imply 

(2.50) 

(2.51) 

Q ( y , 1 )  = Q(7,  - 1) = 0- (2.52) 

Furthermore, equation (2.39) implies that 'P is a function of 7 only which, for 

Y = (*€)iP'(T/). (2.53) 

future convenience, we write as 
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It then follows from equation (2.41) that 

Q = K(7, x) + IvP/2W2gP)p(7), (2.54) 

where Hz(7, x) is a harmonic function which has yet to be determined. In  view 

(2.55) 
of (2 .52 )  

and H is odd in x. 
K ( 7 ,  1) = flz(7, - 1) = - { ~ P / 2 W ) * } W / 9 ,  

We now use equation (2.40) to find that 

V(7,  X) = - (g/2Q2L) H7 - {~ /3~ /242~)*}H’(7 )  - QqH, + G(7). (2.56) 

G(7) must be determined from the boundary conditions and, in particular, 
equations (2.50) and (2.51) imply that 

V(7 ,  1)  = - (9/2Q2L) H V h  1) - *7H,(7, 1) - { ~ P 4 2 ~ ( 2 4 * } ~ ’ ( 7 )  

V(7 ,  - 1) = - (g/2QZL) 4/(7> - 1) - QYHz(7, 1 1 )  

+ G(7) = V+(v) + 2 * ~ 4 Y ( 7 ,  I), (2.57) 

+{u/9~/2k(Z~)*}P’(7) + G(7) = - 2k*Y(7,  - l), (2.58) 

and, therefore, that 

(2.59) 

We can proceed further only if we choose an explicit form for V+(v). We choose 

V+(q) = eiKT, (2.60) 

and we note that any characterization of the flow associated with equation (2.60) 
will apply generally to flows having lateral scale K - ~ .  

With this choice of V+(v), the odd Harmonic function His given by 

H(7,  x) = A eiK? sinh K X  

and, according to equation (2.55), 

p(7) = - (2k 426K cash K / V P )  A eiKV. 

These,? together with equation (2.59) yield 

- P’(7) = V+(7)/{2 + MR(K)), 

where M = gP(v/QP/kQ, 

and 

Finally, equations (2.50) and (2.51) give 

R(K) = 1 - sinh K/K cosh K. 

1 
V(7,  - 1) = ___ 

2+NRv+’ 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

t H and P as given here are consistent with equations (2.57) and (2.58) because qHz is 
negligibly small under the previously imposed condition a - 1 < 1. 
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Figure (6 )  gives the curves of (1  + M B ) / ( 2  + M B )  = const. in the ( M ,  K)-plane, 
but when M-1 and K are both small, as is typical in geophysical situations, 

(2.67) 

Clearly, if 2 < 1, the motion resembles closely that of a fluid of uniform 
density. When 2 > 1, the velocity varies continuously from V+ at the top to zero 
at  the bottom in conformity with the conjecture of the previous section. This 
paragraph can also be phrased as follows: 

When the scale of the surface disturbance, the ambient density gradient and 
the transport properties are such that diffusion overwhelms convection in 

K 

FIGURE 6. Curves of constant (1 + M R ) / ( 2  + M R ) .  

maintaining the ambient density distribution, the fluid moves as though it were 
of uniform density. Alternatively, when the diffusive mechanisms are far too 
weak to compete with convection and maintain the ambient density field, the 
fluid moves in relatively isolated layers and the peripheral velocity varies 
smoothly from the value V+(q) at the top to zero at the bottom. 

In geophysical situations, the diffusion mechanisms may be such that lateral 
diffusion is governed by a different diffusivity than is vertical diffusion. If  one 
takes account of this anisotropy, the description of H preceding equation (2.6 1)  
would be modified to read 

H ( 7 , x )  = eiKq sinh K ’ X ,  

where K’ = K ( Y ~ / v ~ ) )  and vl, v2 are vertical and horizontal diffusion coefficients, 
respectively. This would affect boththe details of the subsequent analysis and the 
precise definition of Z but, again, it  would not affect the character of the flow. 

3. Regions with bottom topography 
In  many geophysical situations, fluid moves in a region with an irregular 

bounding surface. In  order to understand the implications of such irregular 
boundaries we seek the flows which occur in annular regions bounded at one end 
by the surface x = b(q ,0) ,  and at the other by x = 1. Since the velocity and 
pressure fields will now depend on three independent variables we shall need to 
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extend the Ekman layer theory of the foregoing sections. The conservation 
equations are 

u,+v,+wx = 0, (3.1) 

-v+P, = EAU, ( 3 4  

u+p, = EAV, (3.3) 

pz = E Aw, (3.4) 

where u, v, ware the perturbation velocities referred to RQ, p is the dimensionless 
pressure perturbation, E ,  7 and x have already been defined and 8 is the conven- 
tional angular co-ordinate multiplied by RIL. R is the mean radius of the annulus 
which is so narrow compared to R that, for example, the variable coefficient, llr, 
in the tangential component of gradp has been replaced by 1/R. 

we are dealing with a fluid of uniform density again, we write 
We again expect u, v, w, p to exhibit a boundary-layer structure and, since 

u = ~ ( 7 ,  e)  + u,(7, e, €-+ - 11) + u2(7, e, E-+- b)) ,  

v = v(7, 8)  + v1(Y7 8, €-+ - 1)) + v2(7, e, E - q x  - b}), 

w = w(7, e)  + wl(y7 e, E-+{X - 11) + W,(T, e, E-*{X - b}),  

P = wl, 0 )  + Pd7, +-*{x - 1>) + PZ(7, 0, .-"x - b}). 
In  the boundary layers along x = b(7,8) we have 

p2,6 2: - b8pZ,z, PZ,, - b7p2,x7 

Aw, N A2wzz, ..., and, using equations (3.4) and (3.1) to eliminate p ,  and w,, 
equations (3.2) and (3.3) can be cast in the form 

(3.5) E(V, - iau,), = iA-3(v, - iau,), 

where A2 = 1 + bi + bt and a = a, + ia, = ( A  + ib, be)/( 1 + bi).  
It follows that 

v, - iau, = [vzo(7, 8)  - iauz0(q, e)] exp { - (i/sh3)4 (x - b)}, (3.6) 

where v , ~  and uz0 have yet to be determined. Equation (3.1) can now be used to 
find w2. We need only w , ( ~ ,  8 , O )  which is given by 

WAP, 0,O) = b, u20 + b, ~ 2 0  + [(W3P {v20 + (a1 + a,) u201/a1I, 

+ [(&~3)*{(a1-aa,)v20- (a"l+~)u,o}/al~s. (3.7) 

The terms of order €4 must be retained if we are to analyse successfully the flow 
at and near points where b, = b, = 0. 

The corresponding result is easily obtained for ul,vl,wl. We need only 
wl(q, 8 , O )  which is given by 

u71(77 '7 = - (&)' [('lo + u l O ) ~  + ('10 - ulO)O1' 

W(7,  0)  + wdq, 0,O) = w(7,e) + WI(7, 0,O) = 0, 

(3.8) 

(3.9) 

The boundary conditions require that 

U(7 ,  0)  + %(7, 0,O) = v q ,  0)  + %(7, 0 , O )  = 0, (3.10) 

v 7 ,  0 )  + V l ( ? J , e ,  0) = V+(?J, el7 (3.11) 

'(7, +u1(q7 ', O) = u+(q, '), (3.12) 
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where V, and U, are prescribed in accord with the imposed surface motion at 
x = 1. If, away from the Ekman layers, the frictional terms are unimportant, 
then equations (3.2), (3.3) and (3.4) imply that 

V = P, and U =-P8. (3.13) 

In  fact, of course, lateral diffusion is locally important under particular cir- 
cumstances and we must re-assess its role when the ‘inviscid theory’ associated 
with equation (3.13) has been completed. 

Equations (3.7) through (3.13) can now be combined to give 

(Be)* [{AQ(P7 - a2 &)/%}, + { m a :  + a;) ps - a2 P7)/a1}e + API + b, p, - b, pe 
= (8€)+[(V*+ U+),+ (V+- U+)d (3.14) 

Equation (3.14) can be manoeuvred into the form (neglecting terms in P, and P, 
whose coefficients are of order de) 

(fie)* [AP + A*(grad b)2  Pab + hQ{(grad b)2 + J2}pSs] + JP, 

= (&I* [V+, e + V+, + u+, 7 - u+, 01 

= (&)*g(b,s),  (3.15) 

where J is the Jacobian J = b, s, - so b,, A = 82/802+ 82/8r,+, and s is a co-ordinate 
which measures distance along curves b = const. Since P is a stream function 
for U and V ,  equation (3.14) must be solved subject to the boundary condition 
that P is constant on each cylindrical boundary of the annulus. If the tangential 
component of velocity fails to vanish on these surfaces, one must append another 
frictional boundary layer to rectify this local discrepancy. 

In  the next section we will display some details of the flow patterns for certain 
b(7,B) but it is convenient, first, to explore the qualitative features of the flow for 
reasonably general b(7,O).  Suppose that b(7,O) is such that some curves b = const. 
are closed as are those labelled C in figure 7. On any single hill b and s can be 
defined explicitly and, in particular, for each value of b, there is an s,(b) such that 
the points (by 0) and (b, s,(b)) coincide. For the region over this hill then, we write 

d ( P )  = (+.)*Z(P)+ JP, = ( g ~ ) * [ g ( b , ~ ) - G ( b , ~ ) ] + ( ~ ~ ) * G ( b , s ) ,  (3.16) 

where 9 ( P )  is the second-order elliptic operator of (3.151, 

G(b,s) = ( l + A * )  (gradb)2f(b), 

and 

If P I )  and P2) are defined as solutions of 

A = (1 +A*) (grad b)2. 

Pig = f(b) (3.17) 

and JPS” = (&)* [g(b, S) - G(b, s)] (3.18) 

(a periodic solution, P@), is assured by the definition of G ) ,  then P(U+ P@) is a 
solution of (3.16). There is a superficial difficulty near point D, a t  the top of the 
hill (where A = 0 ) ,  but we note that, in the original co-ordinates, we have 
(near D) 

(3.19) 
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If J is linear in the distance from D then there is a region whose size is of order 
I$ in which the first derivatives of P are of order d (so that each term of (3.19) is 
of order €4) and which blends into the solution pC1)+ P(2). Other singular regions 
occur near ‘stagnation points’ such as F of figure 7. Again, depending on the 
local curvature of b ( q , O ) ,  one can expect velocities U ,  V ,  of order E“ with 
O < V 6 * .  

c 

FI~URE 7. Curves b = const. relevant to the discussion following equation (3.15). 

Thus, since the magnitude of Pi1) is of order I f  1, P:) and Pg) must be of order 
1 V+, 11 1 grad b 1 and the flow along contour lines is a t  a speed of order V+ LJL, where 
L, is the topographical scale and L, is the scale with which the imposed motion 
varies. Alternatively, the flow across contour lines is of order .J. LJL,. Inter- 
mediate speeds are to be expected in transition regions. 

On stream lines such as BB’ or EE’ of figure 7 there is no requirement that PcZ) 
be periodic in s. Accordingly, we cannot decompose the non-homogeneous term 
of equation (3.15) as we did in equation (3.16). In  this case, the decomposition 
must be such that P@)+P@) has the same value at each end of the streamline; 
that is, Pwa,l = const. Again, of course, the speed along contour lines is of order 
V+ L,/L2 and that across contour lines is smaller by a factor 46. 

Before turning to a specific topography and imposed surface motion we note 
that, if the surface tractions had been specified instead of the surface motion at 
x = 1, the term A P  would be missing in equation (3.14) and the non-homogeneous 
term would be given in terms of surface tractions. Thus, the character of the 
phenomenon is not changed by this change in the driving specification. 

3.1. Some specijc topographies 

in R,, n- 12n-R 
Let qq,e)  = ( - 1 ) ~  ( 2 N L  e--- 
where R, is the region? 

n- 12n-R n 27rR 
< e < --, 0 < q < 3n,------- 

2N L 2N L 

(3.20) 

(3.21) 1 0 in O < r < n  
K(y,e) = sin2q in 7r < 7 < 2n = h(q), i 0 in 2n < q < 3n 

t Recall that the co-ordinate is so defined that b(7,O) = b(7, 8+ Z?rR/L). 

and let 



160 G .  F .  Carrier 

and U+(r, 8)  = 0 (see figures 8 and 9). For such a topography there are no closed 
contour lines and equation (3.14) has the form 

(&)~[1+(1+C2)~](pBe+Pqq)+(-  l).CP, = (@)*h'(y) in R,L. (3.22) 

Clearly P is well approximated by PI) where 

P(1) = ( -  l)"(+€)ah(q)/C, (3.23) 

0' A' B C 
FIUURE 8. This geometry has period 2n in B', the conventional angular co-ordinate. The 

co-ordinate 8 in figure 10 is a constant multiple of 8'. 

0' ' 
FIGURE 9. Circumferential surface velocity; T is the radial co-ordinate. 

except in regions centring on 8 = nnR/2NL and we describe the full solution in, 
say, -nRl2NL < 8 < nR/2NL by 

P = P(1) + P ( 2 )  (7,8/€Q). (3.24) 

P@) must obey the equation 

KP$(r, 5) + ( - 1)nPc;) = 0, (3.25) 

where K = [1+ (1 + C2))]/J2C and E = B / d ,  and it must obey boundary condi- 
tions consistent with the fact that P and Po are continuous at 8 = 0. These 
boundary conditions are 

P2'(0, E) = P(2)(3n, 5) = 0, 

P(2) ( r ,0+)  = h(r) /C+dr) ,  
P(2)(q, 0 - ) = - h(r)/C+ d q )  

PfZ)(q,O + ) = q y q , 0  - ) = f(7). and (3.26) 

Here q(q)  is the as yet unknown function 

a(?)) = P(r,O): 

and.f(r) is defined by equation (3.26). 
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It is clear that PC2) exists, although its details have yet to be explored. We need 
only note that the streamlines P = const. must be as shown in figure 10, that the 
velocity is of order cf near 8 = 0, and that it is of order €4 elsewhere. 

FIGURE 10. Flow over the topography of equation (3.20) with the surface motion of 
equation (3.21). The details near A and A' are purely schematic; no detailed calculations 
have been made and frictional considerations (absent from this theory) would obliteratc 
siich details anyway. See also figures 8, 9 and 11. . 
FIGURE 11. Circumferential velocity in regions like BB' of figure 8. Over CC' the velocity 
is the reverse of that shown here. The velocity scale is smaller than that of figure 9 by a 
factor ( v / f i ~ z ) & .  

We now consider a topography for which b(7,B) is that of equation (3.20) in 
- 8, = - rR/NL < 8 < nR/NL = 8, but for which b(7 ,O)  = 0 in the rest of the 
region (see figure 12). Except in regions of width 6% which lie in an d neighbour- 
hood of the ends (i.e. near 8 = k 80)7 the flow in - 0, < 8 < 8, is the same as that 
of the previous problem, i.e. P(l)(v,B). However, in the rest of the domain 
P = P(O)(v, 8) where 

and P(0,v)  ,will describe the smooth surface which is conventionally visualized 
via the membrane analogy. The behaviour of P(7, - 8,) and P(r,O,) can be 
determined only by appending to P(')(g, 8) boundary-layer contributions 
P3)(7 ,  (8 - S,)/C:) and P4)(7, (8- 8,}/d) for which, at B,, 

P(O)(y, 8,) = P(l)(q, 8,) +P(4)(7, O) ,  

PP(7, 0,) = W ( V 7  0,) + Wcr ,  0). 

Again the details are not important and the flow pattern is depicted in figure 13. 
1 1  Fluid B'iuch. 23 
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It is interesting to note that in the flat region of this problem 

= h ( y ) - &  in 8, < 8 < 27~-8, 

(because there is no net peripheral flux of fluid) whereas, when b = 0, J' would 
be given by 

V = h(q) for all 8. 
J 

- 4  

PICURE 12. This g?.c:ornet)ry is also periodic in 0 < 0' < 2n but has only one hunip. 

2 n  

n 

0 0, 

FIGURE 13. Flow pattern over 
C8,O < 0 < 0, 

COO, elsewhere, 

-00, -Do < 8 < 0 

x\it,h V+(v) as given by ecpation (3.21). 

Thus, the 'hill' near 0 = 0, completely blocks (to order Je) the flow which 
would occur in the unimpeded container. The final flow is nearly described by 
the unimpeded flow plus a uniform flux-cancelling return flow. 

The flow past an isolated hill or depression can be studied by adopting the 
particular geometry for which 

b = 0 in 0 < 7 < 

except in O2 + ( 9  - 7/2)2 < a!, where (with v2 > R and yl > q2 + R,) 
b ( y , 0 )  = C[R? - 8 2 -  (9 - q a ) 2 ] .  

In the latter region, the natural co-ordinates are 

6 = [02 + (y - y2)2]* and a = arc tan [(r - y2)/8]. 
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In  the region c2 < R2, we denote the pressure field by PC5); in the co-ordinates 
(t;,a) equation (3.14) has the form 

(3.27) 

When I!+(?) is linear in t2 < R2,, g(5,a) = G = const., the solution of equation 

(3.28) 
(3.27) is F5) = GC2/[1 + (1  + C2)i] + K ,  

and there is no flow across contour lines. We shall discuss the constant K later. 

FIGURE 14. Circumferential velocity over flat part of figwo 12. Net# fliix of fluid is zero. 

We denote the pressure field outside of g2 = R2, by 

p = pc@ + P(7), (3.29) 

where P f )  = V+(y) (this is the no-topography solution of 9 2.1) and, in order that 
the pressure field of (3.29) match that of equation (3.28), P7) is a harmonic 
function which must obey the boundary conditions 

p(7) = 0 on y = 0, 

P(7) = K ,  = const. on y = T,,, 

P(7) + PC6) = p(0 011 6 = R,, 

and is such that the top and bottom surfaces of the container exert no net force 
or net torque on the fluid. This last condition removes the lack of uniqueness 
ordinarily encountered in two-dimensional potential-flow problems. In fact, in 
the limit &/y1 --f 0, these conditions are all met if P(’) vanishes on 7 = 0 and on 
7 = yl and if? in equation (3.18), K has the value 

K = - GR2,/[1+ (1  + C2)k]. 

Any other choice than K ,  = 0 implies that a non-vanishing net surface force in 
the &direction is applied to the fluid by the container surface; any other choice 
for K implies that the surface applies a torque about the point 5 = 0. 

3.2. The effects of lateral diffusion 

The flows described in § 3.1 each exhibit regions in which the velocity gradients 
have a scale of order e). We have already seen in [l] that lateral diffusion can play 
an important role in phenomena of this scale. We must conclude, then, that if any 
of the E )  boundary layers associated with the foregoing analysis is thicker (by a 

11-2 
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factor of ‘a few’) than the cylindrical diffusive layer which arose in [l], the effects 
of lateral diffusion will not be important and the descriptions of 3 3.1 are valid. 

This is the case when, for example, C < 5 in the foregoing geometries. Con- 
versely, if C > 5, the lateral boundary layers of the foregoing section are thinner 
than the diffusive layers of [l] and the details of the actual layers can only be 
obtained when frictional effects are taken into account. In  the first two configura- 
tions of 3 3.1, these frictional details cannot modify the flow field away from the 
layers but, in the third geometry, such a broad modification may occur. The 
results obtained by Jacobs (1964) strongly suggest that h’ and K ,  may be 
strongly influenced by the €2 diffusive layer circumscribing the base of the hill. 
I say ‘ suggest ’ because his flow is driven in a very different manner from ours and 
I have not interpreted his result in the context of our flows. 

3.3. Two-layer Jlows with bottom topography 
We consider here the flow of two immiscible fluids whose interface is nearly 
horizontal and is well above the highest point on the lower boundary. The 
three-dimensional Ekman layer theory of 3 3 can be used simply to show that, in 
the upper layer, 

2AP, = (V++TI,+U++U) 0 1  +(V + +&- [T, - m, (3.30) 

aiid that, in the lower layer, 

2 ( P z )  + 2 ~ d J P z , h  = ( T i  + U,), + (&-  U,),, (3.31) 

where the operator 2’ is defined after equation (3.16), V,, U,, are components of 
surface velocity, V,, Ci,, are components of interface velocity, and subscripts 1 and 
2 refer to the upper and the lower fluid respectively. J and s have already been 
defined. The three-dimensional Ekman layer theory also implies (through the 
requirement for continuity of stress) that 

( 1  +k)(V,+iCi,) = (T.’+iU1)+k(t,+iUz), (3.32) 

where k = (P.P2/PlPl)*. 

Equatioii (3.32) can beused toeliminate U,,V, from equations (3.30) arid (3.311, 
after which they can be manipulated into 

p(&) - [2k/( 1 + 2k)]  Apz + (a/€)* JPZ,, = [( V+ + U,), + (I: - U+)O]/( 1 -I- y k )  
= g(9, 8)/(1+ 214 (3.33) 

and k 1+lC 
I -  1+2k I. + 2k 

AP - AP. + ~- g(r, 8).  (3.34) 

The former of these we have already discussed. It implies that (when k cz 1) 
P2 is 1/( 1 + 2k)  of what it would be if there were a single fluid of uniform density 
present. For topography and surface motions like those of the first two problems 
of $3.1, the velocity V,, U.., is always small (with k cz 1, it  is + that of those 
analyses). For the upper layer, then, it follows from the results of 3 2.2 that 

(3.35) U., = u, 21 0 

and V - 9 V - Z  1 - 0 - 3V+(r). (3.36) 
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For the third topography of $3.1 the general problem is non-trivial and we 
shall not pursue its details here. However, when the topographical scale is small 
compared to that of V+(y), the discussion of $ 3 again implies that 27; + V i  is small 
compared to  V2,(y) so that equations (3.35) and (3.36) are good approximations 
again. 

To find PI and Pz in the non-trivial case, we must solve equations (3.33) and 
(3.34) under boundary conditions which require that PI = const., Pz = const. on 
each annular boundary. The lack of uniqueness inherent in this incomplete 
statement must be removed by the requirement that the net force or torque 
applied to  either fluid via the surface tractions is zero. Note that, even in the 
simple situation where b = 0, equation (3.15) leads to the results of [l] and of 
$2.1,  only when this ‘no net traction’ requirement is applied. This difficulty 
arises in the three-dimensional formalism because the surface motions appear in 
the equations only as I:, 7/, 7+, *, etc. 

Z 

t 

I 
FIGURE 15. Charactcrizing geometry of 3 i 

4. Flows in equatorial regions 
We study here the flowinregions whose geometry is typified by that of figure 15. 

The inner boundary is spherical, but the other boundary may be such that the 
flow is not axially symmetric. To deal with such flows, a formalism which 
differs markedly from those in the preceding sections is needed. This need is 
occasioned by the fact that the diffusive layer near the equator in which, for 
example, law/arl % lav/axl and Iul < IwI must blend into those at larger z where 
law/ar] < lav/axl and ( w I  < IuI. Accordingly, we must first develop a boundary- 
layer theory for the equatorial region. 



166 G. F. Carrier 

The dimensionless conservation equations (again) are 

v +p, = E Au, (4.1) 

-u+% = E A V ,  (4.2) 

p ,  = E A u ~ ,  (4.3) 

(4.4) 

The notation is that of $ 3  except that L is the radius of the spherc (see 
figure 15). 

We take advantage ofthe fact that Iu( < lvl and that the characteristic length 
in the q- (radial) direction is smaller than that in other directions and anticipate 
that the final term of equation (4.1) can be omitted. This omission can be justified 
when the theory has been developed by making the usual order-of-magnitude 
comparisons. 

2Gv + v, -t 2(lS = 0. 

With equation (4.1) replaced by 

f, = - p  'I' (4.5) 

it is convenient to write 20 = - $,,, (4.6) 

= P*+@%+do,X)> (4.7) 

and to note that equation (4.4) implies that 

where the constraints which determine g(I9,x) will arise in the context of each 
particular problem. 

When equations (4.5) to (4.7) are substituted into equations (4.2) and (4.3), 
we obtain 

~AVk/+PX = 0, 

8 AP9) - @x = 

&js,,fP.e = 0, 

CPa,,, - II., = 4. 

E x ? / v V +  ixs = - ig(8,x). 

4, 
and since 1 $ , 1 1  + 1$2$1 or I $ f l l  and since 1v71 9 lvsl or Iuol, these can be approxi- 
mated by 

Thus, with $2 - i p  = x, we have 

(4.8) 

It is now convenient to adopt a new co-ordinate system in which one co- 
ordinate measures distance from the equator along the sphericaI boundary, 
another measures distance from the spherical boundary and I9 is unchanged. 
We choose 

(4.9) 

and equation (4.8) becomes 

xttt + i ( X [  + Cxd = - iGr'(o,C)* (4.10) 

A t  this stage one could verify that, in a singular perturbation scheme whose 
largest contribution is described in these co-ordinates, the terms omitted in the 
foregoing do, indeed, belong in higher-order parts of the theory. One could also 
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verify that for axially symmetric flows, u is given by @z and that, in equation 
(4.10), G(8,[)= 0. This statement can be extended to say: whenpo = const. + 0 
and v is independent of 8, u is again given by $z (without loss of generality) and 

I n  the study of any specific phenomenon, one must find x(t ,  #,g) and G'(8,t)  in 
conformity with (4.10) and the boundary conditions appropriate to the equatorial 
region. Furthermore, x must match the description of the flow which applies t o  
the non-equatorial regions. 

G = --pa. 

4.1. Flow in a thin spherical annulus 

We seek here the flow which occurs when the angular velocity PQ of one of the 
spherical shells of figure 16 differs slightly from the velocity SQ' of the other. 
We adopt the average of these to describe the reference state and we measure t 

Frc:ui<e 16. Configuration of' 9 7.1.  y measures distancr from thc broken surface as shown. 

from the spherical surface which bisects the region. We confine ourselves, in this 
section, to situations in which t ,  (see figure 16) is of order unity or less and we 
seek the flow in the equatorial region. We shall establish in a very simple way 
that this flow will match the flow for larger 1x1 whose description is implied by 
$2.1. 

It is convenient once more to modify the co-ordinate system. We define 

y = t/t,, a = ct:, p = t;, 

and equation (4.1) becomes? (recalling that G = 0 for axially symmetric flows) 

xullu + iaxv = - iPx,- (4.11) 

7 In view of the multiplicity of co-ordinate transformations, i t  may be useful to remind 
the reader t b t  a is an appropriately scaled axial co-ordinate which vanishes in the 
equatorial plane and y is a (cylindrically) radial co-ordinate measured from a conveniently 
chosen spherical surface. In this problem the flow-region is - 1 < y 1.  
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Since x should be analytic in p, we can describe x(y,a,p) by 

X ( Y ,  a, P )  = x(o'(y, a)  + IBx'l'(y, 4 + . . . 

xY(+17a,p)= T i ,  

(4.12) 

and, when /3 is small enough, this description should be useful. We adopt as 

(4.13) 
boundary conditions 

(4.14) 

x ( O )  = - i(cosh ys - cosh s)/s sinh s + if(a), (4.15) 

where 5 = (ia)*, args = -&i- when a > 0, args = 277 when cc < 0, and, until 
further constraints arise, f (a) is any real function of a. 

The function x(l) is that solution of 

y(l) YUU +&1) = - Z'PX:? (4.16) 

which is consistent with equations (4.13) and (4.14). It is given by 

i8s5 sinh2 sx(l) = (5 sinh s + 2s cosh s) y cosh sy - sy2 sinh s sinh sy + 4sy 

+ 4y sinh s cosh s - Siyf's3 sinh2s - k(s)  sinh sy. (4.17) 

The last term is a solution of the homogeneous equation and equation (4.17) 
satisfies the boundary conditions only if 

]/S Re [s tanti s]  
4 cosh s --_____ f '  = Im [-- s2+ 9 - 

1 
s2 s sinh s cosh s s sinh s sinh2 s 

and 

= Im [ A ] / 8  Re [s tanh s], 

k = s sinh s g(a) + 9 cosh s + 6s/sinh s 

Im [sA/sinh s] 
Im [s coth s] ' 

g(a) = - _ _  

(4.18) 

(4.19) 

One could go on with this but it seems informative to record only the following: 

and (4.31) 

for a & 1.  
Equation (4.20) indicates clearly that when p 4 60, the flow at the equator is 

entirely controlled by local friction but that, as we consider regions with larger /3 
(recall that = t f )  the velocity profile becomes distorted and it is clear that the 
Ekman layers at large a are exchanging fluid with the equatorial region. The 
large a description of equation (4.21) is precisely the result which would have been 
obtained by the analysis of 5 2.1. Hence, that analysis and the foregoing result 
describe the whole Bow field for p < 30 (i.e. for t ,  ,< 2, an annulus whose spacing 
is not more than 4 R(v/!2R2)+). Further details can be extracted, of course, but 
in the absence of a specific context, such details are not very interesting. Figure 1 7 
depicts the velocity v(y, 0,2) .  
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V ( Y ,  0, B >  

1 

0 
-1 

-1 

. 
1 Y 

FIGURE 17. Tr(y, 0, 2 )  for flow in figure 16 a.s given by equation (4.20). 

4.2. Other thin-layer flows 
In this section we ask whether there are flows in a thin region, - h(a) < y < 0, 
8, < 8 < 8,) for which the velocity field is independent of 6' and for which 
p ,  = const. += 0. A t  the top of the layer, the dimensionless surface tractions 
v y  = - 1, $yy = 0 are given and, on y = - h(a),  we require in problem (a)  that 
VY = $uti - - 0 (tangential stresses vanish) and, alternatively, in problem (b )  that 
the velocity vanish. In  each problem no fluid crosses y = 0 or y = - h(a). We 
shall find that, in each case there is a family of geometries for which such flows 
are possible and that one flow differs macroscopically from another in the net 
amount of fluid that is transported in the @direction. 

To treat these problems conveniently we again need a mild modification of the 
co-ordinate system. We define 5 = y/h(a) so that equation (4.10) becomes 

xcsc - s2h2xc = ih3D - i/3h3x, + iph'h2[xc, (4.22) 

where D is the constant -p0.  We again describe the solution as a power series in p, 
i.e. 

We obtain as an equation for ~ ( 0 )  

x = x ( O )  +px(l) + . . . , h = h(O)(a) + ,!W)(a) + . . . . 

X P ; ~  - s2h,2 xe = - ihi D. (4.23) 

For problem (a ) ,  the boundary conditions are 

x@( - 1, a) = Re x ( O ) (  - 1, a )  = Re x(O)(O, a)  = 0 

~ & ( 0 ,  a) = - i/hg, and 
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and we obtain the solution 

x ( O )  = i(<+ l)/s2--isinhs(c+ l)/s2sinhs + iE,(a), (4.24) 

where D = 1, ho(a) = 1, and, unless further constraints arise, the equation 

i({+ 1), cosh [s(<+ l)] 7i(g+ 1)sinh [s([+ l)] x(1) = -____ ___ - 
8s5 sinh s 896 sinh s 

i({+ 1) coshs sinh [ s ( ~  + l)] ih,(y + 1) cosh [s(<+ l)]-+ ih,({+ 1) - _________ - . _______ ____ 
4s5 sinh2 s s4 sinh s S2 

- E'(a) -____I_ ('+ + A sinh [s(<+ 1 )] + B(cosh [s({+ l)] - 1) + iE2(a), (4.25) 
S2 

and 
i({+ 1)2cosh [s( c+ l)] 3i ( {+  1) sinh [s(c+ l)] __ 

8s3 sinh s 8s4 sinh s 
= - 

3icoshs(?+ 1) 
2s6 sinh s 

icoshs(2cosh[s(c+ l)]+s(<+ 1) sinh . Is(<+ ._ . I)]) - _______ ____ 
454 sinh2 s 

2ih, s 
(s(C+ 1) cosh [s({+ l)] + sinh [s(c+ l)]} - i/sG - ____ 

2s sinh s 

+A(l)s2sinh [s(c+ I)] +B(1)s2cosli [s(<+ l)], (4.26) 

where E2(a) is again a real function to be chosen later and A and B are the as yet 
unknown coefficients of the solutions of the homogeneous equations. Equations 
(4.25) and (4.26) are included only to support the following comments: the 
constant B is determined explicitly from equation (4.26) when we require that 
x(&( - 1, a )  = 0. The constant A is determined from (4.26) in terms of the unknown 
real number h, by requiring that $t&O, a )  = 0. The number h, is obtained from 
(4.25) by requiring that ReX(0,a) = 0. Note, in particular, that no constraints 
appear which help determine E,(a) or E,(a). These functions disappear from each 
substitution into a boundary condition. Furthermore, when one continues the 
process to find x ( ~ ) ,  E,(a) does appear in the determination of A(2) (the counterpart 
of A(1)) from the counterpart of equation (4.26). I n  fact, A(2) is determined in 
terms of h, and [E'(a)/a]'. The requirement that Rex(2)(0,a) = 0 then leaves 
open the choice of [E;(a)/a]'. As the process is continued the same freedom of 
choice arises for E,(a), .... With each such choice of E,(a), h,(a) is implied (by 
Rex(")(O,a) = 0). Thus, there is a family of bottom contours h(a) to which 
there corresponds a family of flow fields for which pe is constant and among 

which the values of 

h, = 11720 and that various choices for E,(O) < (1) leads to the velocity profiles 
of figure 18 when terms of order f l  are included and when f l  = O(30).  

The geophysical implications of this study will be indicated in the next section. 
We note there, however, that the variety of flows which can be constructed in 
this way is limited only in that the choice of E,(a) must not imply such large 

V d <  vary significantly. We note, in particular, that 
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slopes hi,(a) that equation (4.22) is inapplicable and they must not imply such 
large contributions to the higher-order terms that the series cannot be inter- 
preted readily. 

L’(C, 0,8> 
4 

-1 0 

F I C U R I ~  18. V(<, 0 ,  b) for configuration of $ 4.2, problem (a) for various h(a) 
(schematic only). 

’ 
Equatorial 

velocity 

- 1  0 

FIGURE 19. Equatorial velocity profiles for various h(a) for the configuration of S 4.2, 

problem ( 6 ) .  Note t.hat, in general, both here and in figure 18, the net mass flux 1’ Vcl< 

differs from zero and the ‘turn around ’ mechanisms a t  O = 0 , B  = O,, will determine which 
flow fit,s a given, fully prescrihod situation. 

-1 

When, under (b ) ,  we require that the velocity vector vanish on <+ 1 = 0, we 

obtain, i ( 1  +hog) icosh[sh,(S+ I)] i s inhsh ,~  
s2 cosh sh, s3 cosh sh, 

where &(a) is implied by 

- 1  i(1-h,) itanhsh, 

+ ~Jw%l), $0) = -___ - - _ ~ _ _ _ _  

Re ___ + ~___ + .~___ 

[s2 cosh sh, s2 s3 

which implies that 

h,(O) = 25/16 and h,(a) N 1 + (2a)-& for a 9 1.  

With an unreasonable amount of algebraic manipulation, the reader could verify 
that various choices of h,(O) lead to the velocity profiles of figure 19. Again we 
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see that the @-independent flow for various bottom contours h.(a) may differ 
greatly in the net transport of fluid in the @direction. 

5. Geophysical considerations 
Much of the ocean consists of two layers of fluid with relatively uniform 

density separated by the thermocline, a layer of relatively large density gradient. 
The bottom topography is extremely irregular. It is clear from the results of 

3 that the motion in the lower layer should differ greatly from that in the upper 
layer and it is well known that this is the case. However, it  is not quite as easy to 
identify the ‘correct’ model for the upper layer. If the parameter Z of equation 
(3.67) is small compared to unity, as I estimate it to be, the upper layer acts 
largely as though it were of constant density and the results of $3.3 are appro- 
priate. Such a model leads to the prediction of motions which differ from those 
of a model in which (a )  the interface is slippery, or ( b )  the interface is motionless, 
by factors of the order $. The work of $ 3.3 should also permit the study of large- 
scale lower layer motions which are driven by the surface tractions at the ocean- 
atmosphere interface. Strong limitations on the utility of this model (or any 
other simple model) are implicit in the irregularity of the density structure of the 
ocean, the turbulent character of the transport processes and the fact that many 
intense currents in the upper layer may require a non-linear theory. 

The Cromwell current, a surprisingly uniform equatorial undercurrent which 
is found in the Atlantic and the Pacific (Knauss 1960), can be discussed in relation 
to the work of $ 4.2. The flows studied in that section are driven in the same way 
that the Cromwell current is driven. However, there is no reason to believe that 
the interface (thermocline) lies precisely at either the surface of zero tangential 
stress or the surface of vanishing velocity. Nevertheless, the fact that the analysis 
of 54.2 displays velocity profiles which resemble that of the Cromwell current 
and which blend smoothly into acceptable higher-latitude flows suggests strongly 
that the dynamics of the Cromwell current can be understood within the frame- 
work of the theory of § 4. The simplest acceptable analysis would seem to require 
a two-layer model; in the upper layer a small-p ( p  < 60) theory would be appro- 
priate but the lower layer is comparatively thick and is driven by the upper layer 
at  all high latitudes. A two-layer study of the equatorial flow field would be very 
valuable. 

In  brief then, the foregoing material should provide a framework within which 
many facets of ocean-current dynamics can be studied and the adequacy of 
various ‘models’ can be tested. 

The author greatly appreciates the hospitality of the University of Western 
Australia, where this work was performed, and the support of the Guggenheim 
Foundation and a Fulbright Grant whose generosity made this visit possible. 
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